

[image: logo-galaxy_cmjn]


[image: logo-galaxy_bloc-degrade-bleu]

D4.5.1-Model Views Prototype
Virtual EMF – a Model Virtualization Tool












	
	NamE
	partner
	Date

	Written by
	CLASEN C.
	ATLANMOD
	28/11/2011

	
	
	
	

	
	
	
	

	Reviewed by
	BERNARD Y.
	Airbus
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	



 (
A_Doc_Natco
A_Natco_Code
A_Doc_Copyright_Footer
V_Natco_Box1
V_Natco_Box1a
V_Natco_Box2
V_Natco_Box2a
V_Natco_Box2b
V_Natco_Box3
V_Natco_Box3a
V_Natco_Box3b
V_Natco_Box4
V_Natco_Box4a
V_Natco_Box4b
CE    Airbus
0
CE
AIRBUS S.A.S.
AN EADS COMPANY¤
AIRBUS S.A.S
.¤
SOCIÉTÉ PAR ACTIONS SIMPLIFIÉE¤AU CAPITAL DE 2.704.375 EUROS¤R.C.S. TOULOUSE C 383 474 814
1, ROND-POINT MAURICE BELLONTE¤31707 BLAGNAC CEDEX¤FRANCE¤PHONE +33 (0)5 61 93 33 
33
 
A-F   Airbus France
1
A-F
AIRBUS OPERATIONS SAS.
AN EADS COMPANY¤
AIRBUS OPERATIONS SAS ¤SOCIÉTÉ PAR ACTIONS SIMPLIFIÉE¤AU CAPITAL DE 
828.826.931 
EUROS¤R.C.S. N° 420 916 918 TOULOUSE
SIÈGE SOCIAL:¤316 ROUTE DE BAYONNE¤31060 TOULOUSE CEDEX 03, FRANCE¤PHONE +33 (0)5 61 93 55 
55
 
A-D   Airbus 
Deutschland
7
A-D
AIRBUS OPERATIONS 
GmbH
AN EADS COMPANY¤
BANKVERBINDUNGEN:¤DEUTSCHE BANK AG, HAMBURG¤KTO. 024850000, BLZ 200 700 00¤SWIFT/BIC DEUTDEHH¤IBAN DE62200700000024850000¤
DRESDNER BANK AG, HAMBURG¤KTO. 0915859500, BLZ 200 800 00¤SWIFT/BIC DRESDEFF200¤IBAN DE27200800000915859500¤
HYPOVEREINSBANK AG, HAMBURG¤KTO. 223941, BLZ 200 300 00¤SWIFT/BIC HYVEDEMM300¤IBAN DE84200300000000223941
AIRBUS OPERATIONS GMBH¤SITZ DER GESELLSCHAFT: HAMBURG¤REGISTERGERICHT:¤AMTSGERICHT HAMBURG HRB 43527¤VORSITZENDER DES AUFSICHT
SRATES:¤DR. 
THOMAS ENDERS¤GESCHÄFTSFÜHRUNG:¤DR. GERALD WEBER, VORSITZENDER¤JOACHIM SAUER¤HARALD WILHELM
POSTANSCHRIFT:¤POSTFACH 95 01 09¤21111 HAMBURG¤TELEFON +49 (0) 40 7 43-70¤TELEFAX +49 (0) 40 7 43 44 22¤GESCHÄFTSGEBÄUDE:¤KREET
SLAG 10¤21129 HAMBURG¤DEUTSCHLAND¤WERK HAMBURG
 
A-E   Airbus 
Espana
9
A-E
AIRBUS OPERATIONS S.L
AN EADS COMPANY¤
AIRBUS OPERATIONS S.L ¤SOCIEDAD UNIPERSONAL DE¤RESPONSABILIDAD LIMITADA¤REGISTRO MERCANTIL DE MADRID -¤TOMO 16.434 - FOLIO 0 SECCION 8°,
¤FOLIO 1 - HOJA M279.526¤C.I.F.B -82875055
OFICINAS CENTRALES¤404 AVENIDA DE ARAGON¤BP 193, 28022 MADRID¤PHONE +34 91 585 70 00
 
A-
UK  Airbus
 UK
4
A-UK
AIRBUS OPERATIONS LTD
AN EADS COMPANY¤
AIRBUS OPERATIONS LTD REGISTERED IN¤ENGLAND & WALES No 3468788¤REGISTERED OFFICE¤NEW FILTON HOUSE¤FILTON BRISTOL BS99 7AR
AIRBUS OPERATIONS LTD ¤NEW FILTON HOUSE FILTON BRISTOL¤BS99 7AR UNITED KINGDOM¤PHONE +44 (0)117 969 3831¤FAX +44 (0)117 936 2828
V_Export_Control_Id
V_Export_Control_Text1
V_Export_Control_Text2
V_Export_Control_Text3
V_Export_Control_Text4
None
1
 
 
 
 
Military Regime A-UK [OGEL]
3
¤
This
 document contains technical data subject to military export control regulations.
 It may only be exported or its contents may only be divulged under the constraints set forth in the relevant export license.
 In case of any doubt please consult your local export controller.
 This document is being exported under the Open General Export Licence (Technology for Military Goods).
Military Regime [standard]
4
¤
This
 document contains technical data subject to military export control regulations.
 It may only be exported or its contents may only be divulged under the constraints set forth in the relevant export license.
 In case of any doubt please consult your local export controller.
 
Dual use Regime
5
¤
This
 document contains technical data subject to dual use export control regulations.
 It may only be exported or its contents may only be divulged under the constraints set forth in the relevant export license
 respectively regulation. In case of any doubt please consult your local export controller.
 
 
 
R_UpdateType
R_UpdateTypeMult
R_PromptUpdate
Daily
d
1
0
Daily (with prompts)
d
1
-1
Weekly (with prompts)
ww
1
-1
 
Company Use Only
Restricted
Confidential
Secret
) 
	Erreur ! Nom de propriété de document inconnu.
Erreur ! Nom de propriété de document inconnu.
	ORIGIN Erreur ! Nom de propriété de document inconnu.
	PROJECT Erreur ! Nom de propriété de document inconnu.

	
	REFERENCE Erreur ! Nom de propriété de document inconnu.
ISSUE Erreur ! Nom de propriété de document inconnu.
	DATE Erreur ! Nom de propriété de document inconnu.




	
	






© Erreur ! Nom de propriété de document inconnu. Erreur ! Nom de propriété de document inconnu.. All rights reserved. Confidential and proprietary document. Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.
This document and all information contained herein is the sole property of Erreur ! Nom de propriété de document inconnu.. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of Erreur ! Nom de propriété de document inconnu.. This document and its content shall not be used for any purpose other than that for which it is supplied.

	Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.
	Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.
	Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.
	Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.



[bookmark: _Toc31097012]Erreur ! Nom de propriété de document inconnu.	Page 1 of 31



	
©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.	
Page 14 of 14


[bookmark: M_Record_of_Revisions]RECORD OF REVISIONS
	Issue
	Date
	Effect on
	Reasons For Revision

	
	
	Page
	Para
	

	1.0
	28/10/2011
	
	
	Document creation

	 
	
	
	
	



 
[bookmark: M_Table_of_Contents]TABLE OF CONTENTS
1.	Introduction	5
2.	INSTALLation process	6
3.	Virtual EMF - Implementation	7
3.1	Virtual models overview	7
3.2	Architectural overview	8
4.	User Guide	9
4.1	Creating a virtual model	9
4.1.1	The Correspondence Model	9
4.1.2	The Virtualization Metamodel	11
4.1.3	Launching a Virtual Model	11
5.	Performance Tests	14


[bookmark: M_Table_of_References]TABLE OF APPLICABLE DOCUMENTS
	N°
	title
	Reference
	Issue
	Date
	Source

	
	
	
	
	
	Siglum
	Name

	A1 
	
	
	
	
	
	

	A2 
	
	
	
	
	
	

	A3 
	
	
	
	
	
	

	A4 
	
	
	
	
	
	



TABLE OF REFERENCED DOCUMENTS
	N°
	title
	Reference
	Issue

	
	
	
	

	R1 [bookmark: _Ref139357903]
	D1.2.2 Galaxy glossary
	
	

	R2 
	D3.1 Model Views Conceptual Approach
	
	

	R3 
	
	
	

	R4 
	
	
	



ACRONYMS AND DEFINITIONS

Except if explicitly stated otherwise the definition of all terms and acronyms provided in [R1] is applicable in this document. If any, additional and/or specific definitions applicable only in this document are listed in the two tables below.
Acronymes
	Acronym 
	DESCRIPTION

	
	

	
	

	
	

	
	


Definitions
	TERMS
	DESCRIPTION

	
	

	
	

	
	

	
	



	Galaxy
	[image: ]

	D4.5.1-Model Views Prototype
Virtual EMF – a Model Virtualization Tool 
	PROJECT:	GALAXY
REFERENCE: D4.5.2
ISSUE:	1.0 Draft1
	ARPEGE 2009 

	
	
	DATE:	28//10/2011




[bookmark: _Toc314588059][bookmark: _toc1260]Introduction

MDE systems can rely on a large number of heterogeneous models. These models can be very large, and highly interrelated, resulting in growing complexity. Frequently, one needs to manipulate and combine information scattered in several models in order to create a specific view of the system, more manageable and targeting specific scenarios. An overview of this problem and the subsequent conceptual research proposing a solution based on model virtualization is described in the Galaxy deliverable D.3.1.

The current document presents the next step: the realization of the conceptual approach in the form of a prototype tool, i.e., Virtual EMF, a model virtualization engine to support the creation of model views through virtual models. Virtual EMF has been developed on top of the Eclipse Modeling Framework (EMF) and is available as an open-source project in Eclipse Labs at https://code.google.com/a/eclipselabs.org/p/virtual-emf/.

This document is organized as follows: Section 2 describes how to install Virtual EMf. Section 3 provides details on its implementation and architecture. Section 4 presents a brief user guide to defining virtual modes. Finally, Section 5 introduces some performance tests used to validate our tool.



[bookmark: _Toc314588060]INSTALLation process
Virtual EMF (tool and source code) can be retrieved online from Eclipse Labs at:
https://code.google.com/a/eclipselabs.org/p/virtual-emf/

Two ways are available to install Virtual EMF:
1. Install from source:
a. Check out plugins from Subversion repository using the following URL:
i. https://svn.codespot.com/a/eclipselabs.org/virtual-emf/
b. Add projects to Eclipse workspace
c. Launch a runtime Eclipse instance
2. Add the plugins as Jar files to the Eclipse ‘dropins’ folder
a. Jar files are available in the download section in the ‘Virtual_EMF_plugins.zip’ file

An update site for Virtual EMF is coming soon.


[bookmark: _Toc314588061]Virtual EMF - Implementation
This section presents a brief recapitulation of virtual models concepts, as well as Virtual EMF’s architecture, to guide the reader throughout the rest of this document. This has been discussed in further detail in deliverable D.3.1.

[bookmark: _Toc314588062]Virtual models overview
In short, a virtual model is a non-materialized model whose (virtual) model elements are proxies to elements contained in other models. A virtual model does not hold concrete data. Modeling tools and users perceive and manipulate it as a regular materialized model, but in fact the actual elements being accessed are directly retrieved from its contributing models. This allows seamless integration and reuse of original input data into virtual models, without need for duplicating it.

[image: ]
Figure 3‑1. Model Virtualization Overview.
Figure 3-1 depicts the idea. A virtual model conforms to a virtualization metamodel and aggregates information from different contributing models. Based on the relationships between them, a virtualization engine combines its elements in different ways according to translation rules. The translation rule to be applied to each element is defined in a correspondence model that contains virtual links pointing to contributing elements. Figure 3-2 showcases a sample translation process.

[image: ]
Figure 3‑2. Translation of contributing elements into virtual elements.

[bookmark: _Toc314588063]Architectural overview
Virtual models must appear as normal materialized models to users to guarantee their full compatibility with existing EMF-based modelling tools. This means the tool must redefine the behaviour of all EMF modelling operations to provide an adequate, but transparent, support for virtual models.

This is done by provide an alternative implementation of EMF’s interfaces (mainly Resource and EObject, and EList) and corresponding methods. Examples of methods to be implemented are Resource.load(), Resource.save(), EObject.eGet(), EObject.eSet(), EList<EObject>.add(), and so on. This is accomplished by the two main components:

1. Virtualization API: The main component. In charge of managing the resources (models) involved in the virtualization process. It refines the behaviour of EMF's standard API to provide an adequate support for access and manipulation of virtual models.

2. Translation API: A sub-component that implements the execution semantics of translation rules.

Fig. 3 presents the relationship between our APIs with the other components of EMF. Tools access the virtual model by using EMF's interfaces, without concern about the nature of the underlying model they are accessing (e.g. XMIResource is used for XMI models; CDO for database models, and so on). Calls to virtual models are intercepted by the Virtualization API, which automatically identifies referenced element/s and with the aid of the Translation API redirects the operation to contributing models and elements. Virtualization and Translation APIs, in their turn, interact with contributing model elements through a regular implementation of the Model Access API, according to their nature.

[image: ]
Figure 3‑3. API relationship in Virtual EMF


[bookmark: _Toc314588064]User Guide
[bookmark: _Toc314588065]Creating a virtual model
To initialize a virtualization process, users must provide the following input artifacts:

1. Contributing models: the models to be virtualized;
2. Contributing metamodels: the metamodels of the contributing models;
3. Virtualization metamodel: the metamodel of the virtual model;
4. Correspondence model: a (weaving) model containing the relationships between contributing models.

[bookmark: _Toc314588066]The Correspondence Model
The correspondence model is a (weaving) model whose elements identify relationships between contributing elements. I.e., a virtual link may relate two contributing elements that should be merged. These relationships are internally processed by Virtual EMF to transparently manipulate the composed resulting element.

Three types of correspondence links are currently supported:

1. Virtual associations: associations between elements in different contributing models. Navigated as normal internal references. All normal reference properties are supported (opposites, multi-valued, etc...);
2. Merge: merging of two contributing elements into a single merged element. All contributing attributes and properties are available in the merged element. If single-value properties overlap, the merged element uses the one from the preferred element. If properties are multi-value, they are combined into a single list;
3. Filter: discard this element from the virtual model.

In the case no virtual link points to a given contributing element, it is simply reproduced with the same properties as a virtual element. The correspondence model conforms to a Virtual Links metamodel (simplified diagram in Figure 4-1.).
[image: http://virtual-emf.eclipselabs.org.codespot.com/files/VirtualLinksMM.png]
Figure 4‑1. Simplified Virtual Links metamodel.

There are several ways to create a correspondence model. It can be automatically generated from a matching process that compares contributing models. Several works have been already conducted on discovering these relationships (e.g. composition languages, matching model transformations, etc.). Virtual EMF is agnostic to these methods as it only expects the result of the matching. Different matching techniques can then be plugged in Virtual EMF to achieve a fully automated virtualization process. Alternatively, it can be manually defined with the aid of a model editor (figure below display the creation of a correspondence model with the AMW tool).


[image: http://virtual-emf.eclipselabs.org.codespot.com/files/correspondenceModelExample.png]
Figure 4‑2. Use of AMW for defining the correspondence model.


[bookmark: _Toc314588067]The Virtualization Metamodel
As any model, a virtual model conforms to a metamodel that defines the concepts that can populate it. In the case of virtual models, this is a virtualization metamodel that essentially captures the concepts of the contributing metamodels, with the addition of concepts deriving specifically from its composition. For instance, if a reference is created between elements in different contributing models, it must conform to a reference in the virtualization metamodel. Or, if contributing elements are to be merged into a single element, it must conform to a EClass capturing the merged concepts.

The virtualization metamodel can be defined by hand by the user. But, as this can be a tedious task, an ATL transformation is available (in the fr.inria.virtualemf.composition-mm ATL project) to partially automate this task (by providing an additional weaving model with the relationships between contributing metamodels).

[bookmark: _Toc314588068]Launching a Virtual Model
There are two ways to launch the virtualization process:

1. Programmatically, by providing virtualization resources as arguments to the constructor of VirtualResource (Figure 4-3).
2. Via a virtual model file (with the .virtualmodel extension) containing the location paths of the resources (Figure (4-4).

[image: ]
Figure 4‑3. Creating a virtual model by Java code.

[image: ]
Figure 4‑4. A sample virtual model file

Virtual EMF automatically associates within the Eclipse environment the .virtualmodel extension with our tool. This association informs Eclipse that the Virtualization API has to be used when handling, loading or saving models ”stored" in a .virtualmodel file. Therefore, a virtual model file can be simply given as input to any EMF-based modeling tool (e.g. double-clicking a .virtualmodel file will automatically load the virtual model in the standard EMF model editor).

As an example Figure 4-5 showcases a virtual model generated from the composition of a Java model with a KDM model (and merged elements between them) opened from a virtual model file in the standard Ecore Reflexive Model Editor.

[image: ]
Figure 4‑5. Java-KDM virtual model viewed in the Ecore Reflexive Model Editor.

Similarly, Figure 4-6 shows a virtual model generated from the composition of a Java model with a UML model (with inter-model traceability links between its elements).

[image: ]
Figure 4‑6. Java-UML virtual model viewed in MoDisco's Model Browser.

Virtual EMF has been also tested within other modelling tools (e.g. ATL transformations). Examples of virtual models are available online and can be found on Virtual EMF’s website.
[bookmark: _Toc314588069]Performance Tests

This section focuses on the performance of Virtual EMF.

We have conducted tests measuring the memory usage, creation time, and manipulation time of Virtual EMF when compared to a traditional composition approach. As a representative baseline approach for the comparison we use a composition technique based on the execution of ATL model transformations to translate the elements from contributing to composed models.

As a composition scenario, we have adopted one of the simplest possible: 

1. All elements from two contributing models are included in the composed model 

2. Virtual relationships are defined between elements of both models (more specifically, randomly one association per each ten model elements).

We believe this scenario allows a fair comparison of the performances of both approaches. We have tested this scenario for different contributing models sizes (between 1000 and 100.000 elements for each contributing model). All tests were executed in the same machine and OS (Intel Core 2 Duo E6850 3.0GHz, 4GB RAM. Windows 7 Ultimate x64). Each test was repeated twenty times with the average value used as final value for that test.

The tests consisted in:

1. Measuring the time to create the composed model;

2. Measuring the time to manipulate the composed model assuming that we (1) read (eGet()) all contributing elements and its properties and (2) modify (eSet()) the values of all elements. This may be seen as a worst case scenario for our approach, since in a vast majority of cases, only a subset of the elements in the composed model would be accessed, and even less modified;

3. Measuring the total memory usage when creating the composed model (considering all models involved in the virtualization process). We consider the memory usage of both the contributing and composed model since at least at some point (e.g., during the creation of the composed model) all these models would coexist in memory, with this moment becoming a bottleneck (besides, the contributing models could continue to be used in different modeling scenarios).

A summary of the results is shown in Figure 5-1. As it can be seen, our approach behaves far better when creating the composed model and the extra time required when manipulating it can be disregarded. Regarding the memory usage, since we do not duplicate model elements, the usage is essentially equal to the sum of the size of the contributing models (with a small addition coming from the virtual associations).Clearly, there are also situations in which materialized composed model could perform better (e.g. when the composed model is very small in comparison with the contributing ones; here being able to work only with the small composed model would offer some advantages) but we believe that in most application scenarios our approach behaves much better.

[image: ]
Figure 5‑1. Comparison of two view generation approaches: ATL transformation and Virtual Composition (Virtual EMF). The x-axis indicates the total number of contributing elements (sum of the size of each contributing model).

image6.png
Contrlbutlng : Contrlbutlng
Model Ma Mode Model Mb





image7.png
a3

Virtual Model VMab \y
T R e EM !

~ ~ associate >

Correspondence Model

=<1 b3
Cont. Model Mb

Cont. Element

O Correspondence Element —
L___] Virtual Element

—— Virtual Link

Translation Link





image8.png
Tool A

‘!i:FTOO|B
lUSeS

uses

EMF Model Access API

(Resource)
A A A
implements: implements: implements 1
XMI Model DB Model Virtualization API

(XMIResource)

accesses

FileSystem

(CDOResource)

accesses

iii!!!!&ii

(VirtualResource)

AN

uses

uses

TranslationAPI

Virtual EMF




image9.png
B WRef

T ref: string

H ElementRef

4? m
‘ \— lefgModel

B welement
2 name : String
 description : tring

1

ModelRef | L

nedElert

T

element
0.

rightModel ownefiElement

argetElement
)
ElementEnd IS o rceFiement

ments

TilteredElement

2 upperBound : Integer
2 assodiationType : String

oppositd?-L





image10.png
=08

Weaving model S + o

rightModel EEE]

4T Caioad]
T Gt
+ Book13
4 Client Arthur C Clarke

© pletform/resource/frinra virtuslemt.ciamples/Invoice_Cart/conrspondence.amw
4 Virtusl Composition

2 <ounedElement> Merge
4 <mergedElements> Cont Element End /1d
4 <mergedElements> Cont Element End /1d

& <ounedElement> Merge
4 <mergedElements> Cont Element End Arthur C Clarke
4 <mergedElements> Cont Element End Arthur Clarke

5 <ounedElement> Merge
4 <mergedElements> Cont Element End //@cars )/ @items.01d
4 <mergedElements> Cont Element End 2001 a Spcse Odissey

4 Tnvoice Model
4 Invoice 13
<4 Item 2001  Space Odissey
4 Invoice 34
4 lem1 Robot
4 ltem Foundation
4> Client Arthur Clarke
4 Client Isaac Asimoy





image11.png
1 VirtualResource virtualModel = new VirtualResource(Resourcel[]
contributingModels, Resourcel] contributingMetamodels, Resource
virtualizationMetamodel, Resource correspondenceMetamodel);




image12.png
contributingModels = /DemoModels/org.eclipse.ant.core_java.xmi, /DemoModels/
org.eclipse.ant.core.unl

contributingMetamodels = /DemoModels/java.ecore, uri:http://wuww.eclipse.org/
uml2/3.0.0/UML
correspondencelodel = /DemoModels/Java-UML_traces.anw

virtualizationMetamodel = /DemoModels/Java-UML.ecore




image13.png
[
(5 platorm o VRSN NeDiseoDemors Javs FOM Margingaa k =
 Modd crgcpseantcore
 Pacageorg
 pacagesipse
+ Prckagecrs
& Packageml
< packagespuche
© Packagejun
 package g
 packoge 0
¢ retce Decaation Srsleple
4+ Clshierge e
4 iaace Decaation Fleramesite:
4+ Qs Mege OBception
* Typehcss
& Souneretinn
& soucsRegonjme
ey
4 Clsblerg FieDesanpror
+ Soureretjoen
4 Gl rg Fpussram
4 Gl g nputsam
4 biaace Decaation oscble
+ Gl MegeSuinggeade
 Cls Mege Restr
4 Clas Mege FleetFeundizcepion -





image14.png
=0

s

& e meTypelong 1)
& o PrmiheTypeshon 0]

& o rmieTypeveid 0]

4 fove Sglearablercces )

4 fove Snglearabledeclton 623
4 foa Sl (49

& faa TagElmens (4571

& e TotEement 73)

o TypedccessA165)

4 e Topebaramete 3]

& o Uneschedtem()

¥ i e stemaceess 1)

& v vansiecsserfagment
+ umiantaa GO

& umiAssodston 58)

& i lss 076

& o ClasseTemplatdaramees )
P —

& i Genmtasion 9)

¥ umbintetece 4]

3 tinetcaResion 50

& omitrerieses 035

4 omilertUnimieaiotrl 535)

5 umiode t

[ERE

peritrtot
PRy —————Ty

. bedDecations ) [Bod Decrtion]
Lo paciage ) Pacage]
o L daeTrsce ) (]

2% ol el 8]

L diedependency 19 Deosndenc]
1. cuncitibuts () Propers|
L cunecOpection ) (Opestin]
(L cssToceDpposte 1) (ClasDecrston]
¥ lrve ionchation] AfCoreAHT3)
4 evaClewDecinsion] niCispsiinty (0)
4 vnConeciasbon] At 21

Bhuw





image15.png
time ()

time ()

—+—Standard(ATL) Composition  —@=Virtual Composition

50

s0 /
©

© A

m

10

0 —n— = -

aements
(a) Loading time

~—4— Standard(ATL) Composition ~—@—Virtual Composition
©

50 ad
a0

w

2

0

o -—a—a—a

2000 40000 80000 120000 160000 200000

elements

(c) Total time = (a) + (b)

time (s)

memory usage (kbytes)

——Standard(ATL) Composition  —@=Virtual Composition

1

03

\

06

04

02

0

2000 40000 80000 120000 160000 200000

elements

(b) Manipulation time

—4—Standard(ATL) Composition  —B=Virtual Composition

100000

80000
60000

40000

20000

0
2000 40000 80000 120000 160000 200000

elements

(d) Memory Usage




image1.jpeg
0@

Galax

o
v




image2.jpeg




image3.png




image4.wmf

image5.png
AGENCE NATIONALE DE LA RECHERCHE




